
DOI: 10.4018/IJSI.339884

International Journal of Software Innovation
Volume 12 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

The Study on Software Architecture
Smell Refactoring
Kuo Jong-Yih, National Taipei University of Technology, Taiwan

Hsieh Ti-Feng, National Taipei University of Technology, Taiwan

Lin Yu-De, National Taipei University of Technology, Taiwan

Lin Hui-Chi, National Taipei University of Technology, Taiwan*

 https://orcid.org/0000-0002-0492-5428

ABSTRACT

Maintenance and complexity issues in software development continue to increase because of new
requirements and software evolution, and refactoring is required to help software adapt to the changes.
The goal of refactoring is to fix smells in the system. Fixing architectural smells requires more effort
than other smells because it is tangled in multiple components in the system. Architecture smells
refer to commonly used architectural decisions that negatively impact system quality. They cause
high software coupling, create complications when developing new requirements, and are hard to
test and reuse. This paper presented a tool to analyze the causes of architectural smells such as cyclic
dependency and unstable dependency and included a priority metric that could be used to optimize
the smell with the most refactoring efforts and simulate the most cost-effective refactoring path
sequence for a developer to follow. Using a real case scenario, a refactoring path was evaluated with
real refactoring execution, and the validity of the path was verified.

Keywords
Architecture Smell, Refactoring Strategies, Refactoring Tool

INTRODUCTION

In the software development life cycle (SDLC), the scale of a software project will grow because
of the evolution in software requirements, IT equipment upgrades, and technology change (Lehman
et al., 1996), which cause the cost of software maintenance and its complexity to increase. In order
to maintain the quality of a project, teams will need to perform code refactoring regularly to reduce
the accumulation of project technical debt (Suryanarayana et al., 2014). The best chance to do
refactoring in a project is the region where smells are located. The smell is a surface indication that
usually corresponds to a deeper problem in the system (Fowler et al., 1999). It can be classified into
code smell (Fowler et al., 1999), design smell (Suryanarayana et al., 2014), and architectural smell
(Lippert et al., 2006).

https://orcid.org/0000-0002-0492-5428

International Journal of Software Innovation
Volume 12 • Issue 1

2

Architecture smell (AS) is defined as common, but not always intentional, solutions used in
architectural decisions that negatively impact software quality (Garcia et al., 2009). AS has relations
with software architecture, and it may be involved in the division of a system into components, the
arrangement of those components, and the ways in which those components communicate with each
other (Martin, 2017).

The refactoring of AS involves coordinating a set of deliberate architectural activities that
remove a particular architectural smell and improve at least one quality attribute without changing the
system’s scope and functionality (Sas et al., 2019). To help developers to remove AS, we developed
a tool prototype as a support for AS refactoring that could analyze the actual cause of the AS and
the recommended refactoring process based on the architecture smell using variable parameters and
characteristic metrics (Arcelli et al., 2017).

The remainder of this paper is structured as follows: the second section introduces relevant
terms in the field of architectural smells (AS), architectural smell refactoring, and related tools.
The third section presents the research methodology used in this study and outlines the design
of the refactoring process strategies. The fourth section describes the implementation of the
device, presents a case study, and analyzes the results. Section five serves as the conclusion
of the research.

RELATED WORK

Architecture Smell
Architecture smell is considered to violate the common design principle and affects the internal
quality of software. It increases the coupling of components and may break the modularity of
the system. Different authors have provided different definitions of AS according to different
levels, such as Lippert et al., (2006), who defined AS’s in dependency graphs, packages,
subsystems, layers, and so on. Fontana et al., (2019) propose a tool called Arcan developed
for the detection of architectural smells. Evaluate the PageRank and Criticality of these smells
through the analysis of six projects These architectural smells are categorized into three types
based on dependency issues, such as cyclic dependency (CD), unstable dependency (UD),
and hub-like dependency (HL). This analysis has provided the architecture smell related to
dependency issues, such as cyclic dependency (CD), unstable dependency (UD), and hub-
like dependency (HL). Azadi et al., (2019) provide a proposal for AS classification (Figure
1) based on the violation of three design principles, including the principles of modularity
(Suryanarayana et al., 2014), hierarchy (Suryanarayana et al., 2014), and healthy dependency
structure (Caracciolo et al., 2016).

The AS chosen in this study included CD and UD, which can be detected by the Arcan tool
in the detection of three smells in two industrial projects (Arcelli et al., 2016), and both violate the
principle of the healthy dependency structure. CD also violates the principle of modularity, making
it difficult to modify the requirements in the system and affecting the changeability and reusability
of components related to the AS.

Cyclic Dependency
Cyclic Dependency (CD) represents a cycle among several components; it will lead the side effect
when we try to modify the components in cycle. There are several software design principles that
suggest avoiding creating such cycles, like Acyclic Dependencies Principle (Martin, 2003) and The
Common Closure Principle (Robert, 2003). CD may have different topological shapes, which is shown
in Figure 2, provided by Al-Mutawa et al., (2014). More complex shapes mean that the maintainability
of the system is reduced because of the affected part.

International Journal of Software Innovation
Volume 12 • Issue 1

3

The Metrics of Refactoring the Candidate Priority
Developers use the metrics of refactoring the candidate priority to help decide on the best refactoring
candidate to perform the corresponding refactoring strategies. Among the two types of smells in this
study, there is more related research on the priority index of the cyclic dependence smell. Caracciolo
et al., (2016) proposed calculating the number of dependencies between classes (class dependency),
the number of dependencies between packages in a cycle (package dependency), and the number of
shared package dependencies (shared package dependency) in a cycle in the dependency graph, as
package dependencies severity index metric, shown as in Equation (1):

rank pd
cycle pd SPD

CD
cycle

pd

() =
∈| {

	 (1)

With the formula, we can consider the number of dependencies and the overlap degree of the
dependencies as the smell priority metric. The cycle which has a smaller number of dependencies
and a larger overlap degree with other cycles will have the highest priority. Rizzi et al., (2018)
provides another formula for selecting the dependency in CD with the highest priority, as shown as
in Equation (2):

Figure 1. Architectural Smell Classification

Figure 2. Type of Cycle Shapes

International Journal of Software Innovation
Volume 12 • Issue 1

4

P
w

=
+
+ +

−()+ −()
+

+0

1

1
2
1 1

2
3

cycles

w

step
w

I I
Ca w

Afrom to

from

from
� AA

to
�

2
	 (2)

Rizzi’s formula extends the priority metric of the study by the priority metric of the dependency,
considering the Ca

from
, I

from to/
, and A

from to/
. However, the P value of Equation (2) will be greatly

affected because of the Ca
from

 metric.
Based on the above, this research combined the metrics of Rizzi et al., (2018) and Caracciolo

et al., (2016) and followed the stable-dependencies principle. A component should only depend on
components that are more stable than itself.

The Refactoring Technology for Architecture Smell
Architectural smell refactoring is related to architectural refactoring, which is identified defined as a
series of prudent architectural behaviors according to Zimmermann (Sas et al., 2019). With the goal of
eliminating architectural smells, it can be extended by combining different types of techniques based
on the selected abstraction level of the analysis project information. According to Baqais et al., (2020),
among 41 selected papers related to refactoring technology, the selected abstraction levels include the
use of unified modeling language (UML) (2022), models, graphs, and package levels. It also included
the use of the following four categories of techniques, first including search-based algorithms to get the
best solution, second similarity-based algorithms on the similarities between the test sample and a set
of labeled training samples, third agglomerative Hierarchical cluster algorithm as a form of bottom-up
clustering, finally, metric-based algorithms to estimate the robot planar displacement by matching dense
two-dimensional range. Praditwong et al., (2011), approaches to modularization focus on automated
algorithms that seek out new partitions of software, aiming to maximize cohesion and minimize
coupling. It improves the measurements of cohesion and coupling that can be achieved so that, where
this is desirable, the user will have potentially more interesting suggestions from the tool to consider.

For example, Bavota et al., (2014) used the similarity matrix between functions to find out the
candidates for the extraction using the class method. Clustering algorithms are used to classify the
component data in the project into groups, like in Chantian et al., (2019), to propose a refactoring
approach for Too Large Packages smell, which is one of the architecture smells by using community
detection in extracting process. Metric-based algorithms are based on measuring software metrics
and are used to find candidates for refactoring by comparing different versions of the project and
comparing the degree of index change.

In this study, a method that tries to define the static dependency graph of the project is proposed,
the priority formula composed of the measurement index of the component and the characteristics
of each architectural smell is proposed, reconstruction steps of the improved architectural smell
are proposed, and the candidates for refactoring are obtained by measuring the index to solve the
architectural smell.

THE PROPOSED APPROACH

Research Processing Diagram
The research process of this paper is shown in Figure 3.

Data Collection
This research used the dependency graph data provided by Arcan, an AS detection tool that can
analyze project source codes by setting the project path. The graph data contained the metrics of
components, such as packages or classes, as attributes of the nodes in the graph.

International Journal of Software Innovation
Volume 12 • Issue 1

5

Data Analysis
Dependency graph data analysis: The dependency graph data generated by Arcan contained node
elements and edge elements. The node types included component nodes, smell nodes, and shape nodes.
The component node included package nodes and class nodes to represent the package and class in
the Java project. The smell node was used to mark AS, such as CD, UD, and HL, and would point to
the set of component nodes related to the AS, which could be regarded as a corresponding set for the
range of nodes affected by AS. The shape node was used with CD to mark its shape CD constituted.

This study analyzed the component nodes related to the architecture smell using the edge
relationships among nodes. The relationship between CD and UD in the dependency graph is shown
in Figure 4.

Architecture Smell Characteristics Analysis
An architectural smell characteristic is a property or attribute of an architectural smell (Sas et al.,
2019). Architectural smell characteristics can be used to help quantify the severity of the degree to
which an AS affects the system. Architectural smell characteristics can be classified into generic
smell characteristics, which can be measured for every type of smell (such as the size and number of
edges in AS), and specific smell characteristics that can only be measured for certain types of smells,
such as shared package dependencies (SPD) and the edge cycle sharing degree (ECSD) (Caracciolo
et al., 2016).

Figure 3. The Research Process of This Paper

Figure 4. The Relation Between CD and UD Dependency Description in a Graph

International Journal of Software Innovation
Volume 12 • Issue 1

6

Architecture Smell Refactoring Priority Index
This research design first selected the CD with the highest smell refactoring priority index as the
basis for the CD refactoring process and then processes the priority of dependencies that constitute
odors. For the smell refactoring priority index of CD, this research does the formula adjustment; the
formula provided by Caracciolo et al., (2016) suggests this is the most cost-effective sequence of
refactoring operations that will break the cycle. The adjusted formula was as shown in Equation (3):

rank CD
SPD c

DIP DIC
CD

CD CD

() = +
�
| |

* | |
	 (3)

We could find the edge refactoring priority index of the dependency which is the most
recommended. We also provided the adjusted formula, as shown in Equation (4):

′ () = −()+ ()+P Edge w I w A w ECSD
CD from from Edge

� *0 1 1 2 + w
EIR

Edge

3
1

* 	 (4)

In the refactoring process for UD, this research first selected the UD with the highest smell
refactoring priority index and selected the dependency with the highest edge refactoring priority
index to constitute the UD. Fontana et al., (2019) provided the metric reference packages (RP) as
the criticality of UD and suggested the criticality of the smell can be a consideration for refactoring.
The smell refactoring priority index for UD was as shown in Equation (5):

rank UD RP() = 	 (5)

As a UD may consist of more than one unstable relationship, we used the other metric of UD—the
instability gap, as the edge refactoring priority index to help to select the most unstable relationship,
as shown in Equation (6):

′ () = −P Edge I I
UD to from

 	 (6)

After selecting the relationship with the highest ¢P
UD

, we further analyzed the actual cause of
the relationship to find the class dependencies leading the package relationship and suggest the best
refactoring process for the class dependencies, as shown in Equation (7):

′ () = −()+ ()P EdgeInClasses w I w A
UD from from

� 0 1 1 	 (7)

Architecture Smell Refactoring Strategies
Refactoring Strategies for CD
Regarding the refactoring strategies for CD, we adjusted the refactoring process provided by the Rizzi
et al., (2018) process of explaining how the dependencies between the suites are composed and how
to refactor. We analyzed the total CDs in the project, calculated the rank, found the CD with the
highest rank, and analyzed the edges constructing the CD to find the edge with the highest ¢P

CD
. If

International Journal of Software Innovation
Volume 12 • Issue 1

7

the edge represented a package dependency, we would analyze the actual cause of the package
dependency to provide more information about the CD.

The adjusted CD reconstruction process in this study is shown in Figure 5.

Refactoring Strategies for UD
Regarding the refactoring strategies used for UD, we analyzed the total UDs in the project shown in
Figure 6, and sorted all UDs in the system to find out the UDs that should be processed first in the
system. Based on this UD, we found out the unstable relationship that should be dealt with first and
analyze the actual cause of the unstable relationship, and found the edge with the highest ¢P

UD
. As

the unstable relationships all belonged to a package dependency, we directly analyzed the actual cause
of the package dependency.

PRACTICE AND EXPERIMENT

This section introduces the implementation method for the architecture smell refactoring
support tool. In order to evaluate the tool, we used a proof-of-concept prototype to analyze
one open-source project and invited subjects to participate in a refactoring experiment for the
evaluation of our tool.

Figure 5. Path Model of Relations Among Study Variables

Figure 6. The UD Refactoring Process Design in This Research

International Journal of Software Innovation
Volume 12 • Issue 1

8

System Flow Chart
The flow chart of the architecture smell refactoring support tool proposed in this research is shown
in Figure 7.

Experiment I: Informa Project Refactoring
Case Information
We used the Informa used by Rizzi et al., (2018) as a case for experimental comparison as the case
for architecture smell refactoring. Informa provides a Java-based library for RSS (simple syndication)
access. It supports data extraction from channels (such as websites) in different formats and notifies
the user whenever information is updated. The basic information of Informa Projects’ metrics is
shown in Table 1.

The architecture of Informa is shown in Figure 8. There are six packages in Informa project
architecture. The parser package is used to provide the RSS data parser in a different format. The
core package is used to provide the interface class of the domain objects and then implement it by
the class in the impl package. The impl package provides two ways to implement a core object,
implementation methods storing data in memory (basic) and using an external database framework
(hibernate). The utils package contains the manager package, which manages the channel and provides
RSS data, the cleaner package, which is used to clean data in the channel, the poller package, which
is used to manage user notifications, and the toolkit package, which performs task scheduling. The
search package provides the search function for RSS data, and the exporter’s package provides the
RSS output data in a different format.

This study used Arcan version 1.2.1 as the research tool. After analyzing Informa, the total
number of architecture smells detected was as shown in Table 2. The most common architectural
smell in the project was CD.

Figure 7. Flow Chart of the Architecture Smell Refactoring Support Tool

Table 1. The Informa Metrics

Project Name Version NOP NOC LOC

Informa 0.7.0 19 199 9722

International Journal of Software Innovation
Volume 12 • Issue 1

9

Result for Refactoring CD
CD can be categorized into the class level and package level. The corresponding CDs in Informa
are shown in Table 3.

After analyzing the CDs in Informa, we found many different causes of CD at the package and
class levels, as shown in Figure 9. There were two reasons for CD at the class level in Informa: one
was the dependency between classes, as shown in Figure 9(c), and the other was the dependency
between classes and its inner classes, as shown in Figure 9(d). The reason for CD at the package level
in Informa was the dependency between packages, like that shown in Figure 9(a), and the overlap of
complex cycles with other CDs, like that shown in Figure 9(b).

Following the steps as mentioned in Chapter 3, Section 5, after analyzing the CD, based on
Chapter 3, Section 4 (Equation 3), we can calculate the smell refactoring priority index of CD in
Informa, so that the tool will select the CD utils Û impl.basic who has the highest rank(0.175) as
the next refactoring candidate. After finding the CD, the tool will further analyze the dependencies
that constitute the CD, and calculate the edge refactoring priority index of the dependencies, as shown
in Table 5. That tool will select the edge impl.basic-packageIsAfferentOf->utils which has the highest
P as the refactoring edge candidate. If the chosen edge’s level is package, the tool will analyze the
class dependencies that lead the chosen edge. For the edge impl.basic-packageIsAfferentOf->utils,
we can find the class dependencies shown in Table 4.

Figure 8. The Architecture of Informa

Table 2. Number of Architecture Smells in Informa

Project Name Numbers of CD Numbers of UD

Informa 18 3

Table 3. Number of CDs at Different Levels in Informa

Numbers of CD CD in package level CD in class level

18 5 13

International Journal of Software Innovation
Volume 12 • Issue 1

10

Table 5 shows the total refactoring sequences for eliminating all CDs in Informa generated by
the tool. The total 18 CDs will be eliminated in 17 steps with three suggested refactoring sequences.

Comparison With Rizzi
In order to make a comparison with the Rizzi et al., (2018) refactoring steps and the proposed
refactoring steps, this research implemented Rizzi’s architectural smell refactoring strategy. The
biggest difference between the proposed strategy and Rizzi’s refactoring strategy was that the proposed
strategy could select the smell with the highest rank first, as it would be the most cost-effective smell,
would have fewer dependencies, and would have the highest degree of overlap with other cycles in
the project. The comparison between the proposed strategy and that of Rizzi is shown in Table 6.

Result for Refactoring UD
Three UDs were detected in Informa, and the smell distribution was shown in Figure 10.

Based on Equation (5), the Rizzi Refactoring Path selected the UD with the most RPs; therefore,
the UD related to utils -> impl.hibernate and utils -> parsers were selected first. Because the UD had
two unstable dependencies, the tool calculated the instability gap between the dependencies, selected
the dependency with the highest instability gap, and analyzed the class dependencies constituting the
package dependency. After analyzing the UD, the tool deleted the related dependencies and repeated
the process until all UDs were deleted.

Experiment II: Refactoring With Subjects
In order to evaluate the information generated by the tool, we invited six subjects to analyze software
projects and refactor and diagnose architectural smells with and without the architectural smell

Figure 9. The Cause of CD in Informa

Table 4. Dependencies Metric of Selected CD

Edge P Level

utils-packageIsAfferentOf->impl.
basic 2.8145 package

impl.basic-packageIsAfferentOf-
>utils 2.9137 package

International Journal of Software Innovation
Volume 12 • Issue 1

11

refactoring in Informa and with and without the architecture smell refactoring support tools, including
Arcan, Rizzi’s method, and the proposed tool in this research.

All the subjects were first-year Master of Computer Science and Information Engineering students
at NTUT (National Taipei University of Technology), and all of them had taken software engineering
and object-oriented analysis and design lessons. The record of the course scores is shown in Table
7, and the scores are in the range of 81 to 89.

There were seven stages in this experimental design. The first stages tested the subjects’ domain
knowledge with a comprehension quiz, which was used to make sure that all the subjects had a

Table 5. Refactoring Sequences for Eliminating All CD In Informa

Steps Refactoring Sequences Generated by Tool

1

impl.basic-packageIsAfferentOf-> utils

impl.basic.Item-dependsOn-> utils.XmlPathUtils

impl.basic.Channel-dependsOn-> utils.XmlPathUtils

2 utils.PersistChanGrpMgr-dependsOn-> utils.PersistChanGrpMgrTask

3 utils.poller.Poller$SchedulerCallback-dependsOn-> utils.poller.Poller

4 parsers.RSS_1_0_Parser$RSS_1_0_ParserHolder-dependsOn-> parsers.RSS_1_0_Parser

5 parsers.Atom_1_0_Parser$Atom_1_0_ParserHolder-dependsOn-> parsers.Atom_1_0_Parser

6 utils.cleaner.Cleaner$SchedulerCallback-dependsOn-> utils.cleaner.Cleaner

7 parsers.RSS_2_0_Parser$RSS_2_0_ParserHolder-dependsOn-> parsers.RSS_2_0_Parser

8 utils.cleaner.Cleaner$CleanerThreadFactory-dependsOn->utils.cleaner.Cleaner

9 parsers.RSS_0_91_Parser$RSS_0_91_ParserHolder-dependsOn-> parsers.RSS_0_91_Parser

10 utils.poller.Poller$PollerThreadFactory-dependsOn->utils.poller.Poller

11 utils.FeedRefreshDaemon-dependsOn-> utils.FeedRefreshDaemon$FeedRefreshTask

12 utils.ChannelRegistry-dependsOn-> utils.UpdateChannelTask

13 utils.toolkit.Scheduler-dependsOn-> utils.toolkit.Scheduler$SchedulerTask

14 parsers.Atom_0_3_Parser$Atom_0_3_ParserHolder-dependsOn-> parsers.Atom_0_3_Parser

15
utils.toolkit-packageIsAfferentOf-> utils.poller

utils.toolkit.WorkersManager-dependsOn->utils.poller.PriorityComparator

16

utils-packageIsAfferentOf-> impl.hibernate

utils.PersistChanGrpMgr-dependsOn-> impl.hibernate.Channel

utils.PersistChanGrpMgr-dependsOn-> impl.hibernate.ChannelBuilder

utils.PersistChanGrpMgr-dependsOn-> impl.hibernate.ChannelGroup

utils.PersistChanGrpMgrTask-dependsOn-> impl.hibernate.ChannelBuilder

utils.PersistChanGrpMgrTask-dependsOn-> impl.hibernate.Channel

utils.PersistChanGrpMgrTask-dependsOn-> impl.hibernate.ChannelGroup

17

utils-packageIsAfferentOf-> parsers

utils.FeedManagerEntry-dependsOn-> parsers.FeedParser

utils.UpdateChannelTask-dependsOn-> parsers.FeedParser

utils.PersistChanGrpMgrTask-dependsOn-> parsers.FeedParser

utils.FeedManager-dependsOn-> parsers.OPMLParser

The numbers of total sequences 30

International Journal of Software Innovation
Volume 12 • Issue 1

12

unified understanding of the experimental related fields. The authors designed a pretest quiz and a
post-test quiz. In the second stage, we investigated if the subjects have a consistent understanding of
the domain after the education and training.

Stage four was the introduction to the experiment and the opening for Informa, including the
software architecture of Informa, the definition of RSS, and how to use Informa to develop a simple
RSS reader. The introduction to the experiment defined AS, explained how to perform refactoring,
and let the subjects know how to identify the region of the AS, analyze the actual cause, and perform
the refactoring strategies.

Stages five and six were the architecture smell refactoring diagnosis experiments without and
with the architecture smell refactoring support tool, every stage remained 90 minutes. The architecture
smells refactoring support tools included Arcan, Rizzi’s method, and the proposed research tool. To
make sure the subjects would not know which tool was being used, the tools were named tool A
(Arcan), tool B (Rizzi’s method), and tool C (the proposed method).

Table 6. Comparison with Refactoring Steps in this Study with Rizzi Refactoring Steps

Project Name This Research Rizzi’s

Rounds 17 17

Total Refactor Sequences 30 17

Considering the edge overlap degree Yes No

Analyze the real reason led to the edge. Yes No

Provide detailed information on CDs Yes No

Figure 10. Total UDs in Informa

Table 7. Records of Subjects Taking Courses

Subject ID Software Engineering Object-Oriented Analysis and
Design

A 88 84

B 84 84

C 81 86

D 83 86

E 86 86

F 85 86

International Journal of Software Innovation
Volume 12 • Issue 1

13

The questionnaire in this study was designed according to a Likert scale (1932) and included eight
questions. Questions 1–3 measured the subjects’ feelings about the first part of the experiment without
any architecture smell refactoring support tool. Question 4 was used to ask about the architecture smell
support tools used by the subjects. Questions 5–7 measured the subjects’ feelings about the second
part of the experiment with the architecture smell refactoring support tool. Question 8 measured the
subjects’ feelings about the tools they used and if it helps to save time during the whole refactoring
process. The questionnaire used a seven-point scale for scoring (except for question 4), with a score
of 1 to 7 indicating strongly agree, agree, somewhat agree, neither agree nor disagree, somewhat
disagree, disagree, and strongly disagree, respectively.

The Result of the Experiment
The pretest and posttest results are shown in Table 8. The results indicated that after the experiment-
related domain knowledge education and training stage, all the scores were higher.

The box plot of Table 8 is shown in Fig. 11. The results indicated that the posttest IQR was better
than the pretest IQR, meaning the subjects’ understanding of the domain had improved, while the
understanding criteria of the subjects tended to be at the same level.

Table 9 presents a record of each process of the architecture smell refactoring diagnosis from the
first part of the experiment. To carry out the architecture smell refactoring diagnosis without using a
tool, the subjects first needed to compare the dependencies between classes or packages in Informa
according to the definition of CD smell. This required the subjects to perform manual comparisons
of many source codes to determine the circular dependency odor.

Table 8. Records of Subjects Taking Courses

Subject ID Pretest score Posttest score

a 88 100

b 72 96

c 72 92

d 84 96

e 76 100

f 80 100

Pretest IQR Posttest IQR

10 4

Figure 11. Box Plot of the Subjects’ Domain Knowledge Comprehension Quiz

International Journal of Software Innovation
Volume 12 • Issue 1

14

Table 10 is the record of each process of the architecture smell refactoring diagnosis from the
second part of the experiment, in which subject a and subject d use A tool - Arcan tool; subject b
and subject e use B tool – Rizzi’s tool; subject c and subject f use the C tool - a tool developed for
this research.

We observed that the number of CDs finished at each stage of the refactoring process by all
subjects was higher. This indicates that the information provided by these three support tools helped
the subjects to perform the refactoring process for architecture smell and helped to increase the number
of smells that complete the refactoring diagnosis.

For the comparison of individual tools, the total number of CDs that the tool completed the whole
smell refactoring diagnosis for and the difference between part one and part two of the CDs, which
the whole refactoring diagnosis analysis finished with the tool, is shown in Table 11. We observed
that tool C (the proposed tool in this study) had the highest number in both fields.

CONCLUSION

This research provided a prototype of an architecture smell refactoring support tool with the
dependency graph analyzed by Arcan. The tool could analyze the cyclic dependency and unstable
dependency smell, including the actual cause of the smell and the recommended refactoring process
for eliminating all smells in a project, implemented by refactoring strategy for CD and UD with the
combination of the architecture smell characteristics.

Table 9. The Number of CDs Finished in Each Process in Part One

Subject
ID

The numbers of found
CDs in part one.

The numbers of the
CDs which the actual

cause analysis finished
in part one.

The numbers of
the CDs which the

refactoring strategies
analysis finished in

part one.

The numbers of the
CDs which the whole
refactoring diagnosis
analysis finished in

part one.

a 0 0 0 0

b 3 3 3 3

c 3 3 2 2

d 1 1 0 0

e 0 0 0 0

Table 10. The Number of CDs Finished in Each Process in Part Two

Tool
ID

Subject
ID

The numbers of
found CDs in part

two.

The numbers of the
CDs which the actual

cause analysis finished
in part two.

The numbers of
the CDs which the

refactoring strategies
analysis finished in

part two.

The numbers of the
CDs which the whole
refactoring diagnosis
analysis finished in

part two.

A a 4 4 4 4

A d 5 5 5 5

B b 6 6 6 6

B e 5 5 5 5

C c 6 6 6 6

C f 7 7 7 7

International Journal of Software Innovation
Volume 12 • Issue 1

15

The results of Experiment I show that the information provided by the tool was more detailed
than that provided by Rizzi’s method. The results of Experiment II show that the proposed tool had
a better score than that provided by Arcan or Rizzi’s tool. Therefore, the tool could help developers
save the time needed to analyze architecture smells and the time needed to calculate the metrics of
the architecture smell characteristics.

In the future, we hope our tool will be able to provide more architecture smell refactoring
support for different smells, such as Hub-like dependencies or God -component smells and add the
suggestion for the refactoring method, like extract method or move class, etc. The tool’s recommended
refactoring process can become closer to the refactoring process of actual developers and provide
more information on how to refactor the smell.

In the future, we hope to invite different types of subjects, such as junior and senior developers,
to clarify what different types of developers think about the architecture smell refactoring support
tool, and keep adjusting the function and information of the tool based on feedback, to let the users
improve the quality of the software project.

CONFLICTS OF INTEREST

There are no conflicts of interest among authors.

FUNDING

This research was supported by the National Science Council under grant number MOST 111-2221-
E-027-133.

Table 11. Comparison Between Tools

Tool
The total number of CDs which the whole

refactoring diagnosis analysis finished with the
tool.

The difference between part one and part two of
the CDs which the whole refactoring diagnosis

analysis finished with the tool.

A 9 9

B 12 8

C 13 10

International Journal of Software Innovation
Volume 12 • Issue 1

16

REFERENCES

Al-Mutawa, H. A., Dietrich, J., Marsland, S., & McCartin, C. (2014). On the shape of circular dependencies
in Java Programs. Proceedings of the 2014 23rd Australian Software Engineering Conference (ASWEC ’14),
48–57. doi:10.1109/ASWEC.2014.15

Arcelli, F. F., Pigazzini, I., Roveda, R., & Zanoni, M. (2017). Automatic detection of instability architectural
smells, Automatic Detection of Instability Architectural Smells. Proceedings of the 32nd IEEE International
Conference on Software Maintenance and Evolution, 433-437. doi:10.1109/ICSME.2016.33

Azadi, U., Arcelli, F. F., & Taibi, D. (2019). Architectural smells detected by tools: a A catalogue proposal. 2019
IEEE/ACM International Conference on Technical Debt (TechDebt), 88-97. doi:10.1109/TechDebt.2019.00027

Baqais, A. A. B., & Alshayeb, M. (2020). Automatic software refactoring: A A systematic literature review.
Software Quality Journal, 28(2), 459–502. doi:10.1007/s11219-019-09477-y

Bavota, G., De Lucia, A., Marcus, A., & Oliveto, R. (2014). Automating extract class refactoring: An An improved
method and its evaluation. Empirical Software Engineering, 19(6), 1617–1664. doi:10.1007/s10664-013-9256-x

Caracciolo, A., Bledar, A., Lungu, M., & Nierstrasz, O. (2016). Marea: A semi-automatic decision support system
for breaking dependency cycles. 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), 482-492. doi:10.1109/SANER.2016.11

Chantian, B., & Muenchaisri, P. (2019). A refactoring approach for too large packages using community detection
and dependency-based impacts. In Proceedings of the 1st World Symposium on Software Engineering (WSSE
’19). Association for Computing Machinery. doi:10.1145/3362125.3362132

Fontana, F. A., Pigazzini, I., Raibulet, C., Basciano, S., & Roveda, R. (2019). Pagerank and criticality of
architectural smells. Proceedings of the 13th European Conference on Software Architecture, 2, 197-204.
doi:10.1145/3344948.3344982

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, D. (1999). Refactoring: Improving the design of existing
code (1st ed.). Addison-Wesley Professional.

Garcia, J., Popescu, D., Edwards, G., & Medvidovic, N. (2009). Identifying architectural bad smells, 2009 13th
European Conference on Software Maintenance and Reengineering, 255-258. doi:10.1109/CSMR.2009.59

Lehman, M. M. (1996). Laws of software evolution revisited. Proceedings of the 5th European Workshop on
Software Process Technology, 108–124. doi:10.1007/BFb0017737

Likert, R. (1932). A technique for the measurement of attitudes. Archives de Psychologie.

Lippert, M., & Roock, S. (2006). Refactoring in large software projects: performing Performing complex
restructurings successfully. John Wiley & Sons.

Martin, C. (2017). Clean architecture: A craftsman’s guide to software structure and design. Prentice Hall Press.

Martin, R. (2003). Agile software development: Principles, patterns, and practices. Prentice Hall PTR.

Pan, W. F., Jiang, B., & Li, B. (2013). Refactoring software packages via community detection in complex software
networks. International Journal of Automation and Computing, 10(2), 27–31. doi:10.1007/s11633-013-0708-y

Praditwong, K., Harman, M., & Yao, X. (2011). Software module clustering as a multi-objective search problem.
IEEE Transactions on Software Engineering, 37(2), 264–282. doi:10.1109/TSE.2010.26

Rizzi, L., Fontana, F. A., & Roveda, R. (2018). Support for architectural smell refactoring. In Proceedings
of the 2nd International Workshop on Refactoring (IWoR 2018). Association for Computing Machinery.
doi:10.1145/3242163.3242165

Sas, D., Avgeriou, P., & Arcelli, F. F. (2019). Investigating instability architectural smells evolution: An exploratory
case study. 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), 557–567.
doi:10.1109/ICSME.2019.00090

http://dx.doi.org/10.1109/ASWEC.2014.15
http://dx.doi.org/10.1109/ICSME.2016.33
http://dx.doi.org/10.1109/TechDebt.2019.00027
http://dx.doi.org/10.1007/s11219-019-09477-y
http://dx.doi.org/10.1007/s10664-013-9256-x
http://dx.doi.org/10.1109/SANER.2016.11
http://dx.doi.org/10.1145/3362125.3362132
http://dx.doi.org/10.1145/3344948.3344982
http://dx.doi.org/10.1109/CSMR.2009.59
http://dx.doi.org/10.1007/BFb0017737
http://dx.doi.org/10.1007/s11633-013-0708-y
http://dx.doi.org/10.1109/TSE.2010.26
http://dx.doi.org/10.1145/3242163.3242165
http://dx.doi.org/10.1109/ICSME.2019.00090

International Journal of Software Innovation
Volume 12 • Issue 1

17

Jong-Yih Kuo is currently a Professor in the Department of Computer Science and Information Engineering at
Taipei University of Technology in Taiwan. He received a Ph.D. degree in the Department of Computer Science
and Information Engineering from National Central University in Taiwan in 1998. His current research interests
include software engineering and intelligent systems.

Ti-Feng Hsieh received the M.S. degree in Computer Science and Information Engineering from Taipei University
of Technology, Taiwan. His research interests include software engineering, and machine learning.

Yu-De Lin received the M.S. degree in Computer Science and Information Engineering from Taipei University of
Technology, Taiwan. Her research interests include software engineering, and machine learning.

Hui-Chi Lin is currently pursuing a master’s degree in the School of Computer Science and Information
Engineering at Taipei University of Technology in Taiwan. Her research interests include software engineering,
and machine learning.

Suryanarayana, G., Samarthyam, G., & Sharma, T. (2014). Refactoring for software design smells: Managing
technical debt. Morgan Kaufmann (1st ed.). http://www.omg.org

Zimmermann, O. (2015). Architectural refactoring: A task-centric view on software evolution. IEEE Software,
32(2), 26–29. doi:10.1109/MS.2015.37

http://www.omg.org
http://dx.doi.org/10.1109/MS.2015.37

